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Introduction and Outline

• Computer simulations and linac operating experience show that 
a small fraction of particles can acquire a large transverse 
energy to form halo. 

• Halo particles can induce radioactivity, a major concern for new
generation of high-intensity proton linacs (ATW, SNS).

• The cause of halo had remained a mystery since LAMPF was 
built (1972).

• During the past decade a theoretical framework was developed 
based on computer simulation and a particle core model. I will 
review the present understanding.

• A beam halo experiment is now in progress at Los Alamos to 
test our simulation codes and our understanding. I will describe 
the experiment and show some preliminary results.



Rms mismatched beam (on right) develops larger 
amplitudes than rms matched beam (on left)

Example of Beam Halo --Simulation of beam 
transport line with quadrupole focusing 

shows that halo is formed in mismatched beams.



Beam mismatch creates extended halo

• Beam matching produces a desirable balance between focusing 
and defocusing forces.

• Beam mismatch produces an imbalance resulting in excitation of 
rms envelope modes of the beam and immediate increase in 
particle amplitudes.

• Individual beam particles executing betatron motion through the 
oscillating beam core can gain transverse energy from the 
space-charge force. 

• Such particles are slowly driven to even larger amplitudes
through a space-charge parametric resonance with the core 
oscillations (shown by Gluckstern).

• Analytic particle-core models have been constructed for different 
bunch geometries to describe the resonant behavior of the halo 
particles.
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Details of Particle-Core Model

• Envelope equation models dynamics of the beam core.

• Mismatch the initial core size to excite an “envelope” 
oscillation mode such as the breathing mode.

• Introduce test particles that experience non-linear space-
charge field of oscillating core. 

• As particle amplitude increases, particle frequency 
increases. 

• Particles with frequency f = f mode/2 are slowly driven by 
space-charge of oscillating core to form more extended 
halo. 



Equations for Sphere Particle/Core Model
(Other models include cylinder, and 2D and 3D ellipsoids)
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Scaling of maximum resonant amplitude from 
sphere particle-core model suggests design 

guidelines.
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Particle-core model summary

• Halo extent is limited because of the amplitude-dependence of 
particle-oscillation frequency (simulations confirm this as a good 
approximation).

• Growth rate of halo increases as beam becomes more space-
charge dominated).

• Ellipsoidal models (Maryland, LLNL, and LANL) show bunch 
aspect ratio dependence. For z>2r symmetric (breathing) mode 
generates mostly transverse halo. Antisymmetric mode 
generates mostly longitudinal halo.

• Rf nonlinear force disrupts the parametric resonance condition 
for longitudinal halo. (J. Barnard and S. Lund). Simulations 
confirm that longitudinal halo is well confined within rf bucket.

• Scaling formula shows that to limit the halo you want strong 
focusing, good matching, and high frequency.



Beam-Halo Experiment

• 75-mA pulsed beam (~30-µsec pulse, 1-Hz) from 6.7-MeV RFQ 
at LEDA facility. 

• FODO transport line with 52 quadrupoles and ample compliment 
of beam diagnostics. 

• First four quadrupoles are used to create breathing- and 
quadrupole-mode mismatches.

• 10 mismatch oscillations, enough to produce measurable halo 
growth as predicted by simulations.

• Use special beam-profile scanners consisting of a thin wire for 
core measurement and plates for halo measurement. Large 
dynamic intensity range for beam profile (at least 10000).

• Vary mismatch and current. Measure and compare with codes 
1) rms emittances, 2) maximum detectable amplitudes, 3) 
kurtosis (beam profile parameter).

• Also search for additional halo from other sources.



Fully Instrumented LEDA 
Beam-Halo Lattice

52 Quadrupoles + 4 in the HEBT
9 Wire Scanners/Halo Scrapers (Projections) + 1 in the HEBT
3 Toroid (Pulsed Current) + 2 in the HEBT
5 PMT Loss Monitors (Loss) + 2 in the HEBT
10 Steering Magnets + 2 in the HEBT
10 Beam Position Monitors (Position) + 5 in the HEBT
2 Resistive Wall Current Monitors (Central Energy)

52 quadrupole FODO lattice

T WS/HS

BPMs

Steerers

PMTs

WS/HSWS/HS

RFQ HEBT
RWCs

First 4
quadrupoles

independently
powered

for generating
mismatch modes.

11 meters



LEDA Facility Halo Lattice



Close Up of WS #45 through 
WS #51



Beam-halo experiment

RFQ-
6.7 MeV

52 quadrupole FODO lattice

10.9 m

Beam-profile scanner
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Beam profile monitor is our main halo diagnostic 

tool (J.D.Gilpatrick, et al.)

• 9 measurement stations at which both horizontal and vertical projected 
distributions are measured.

• Wire is 33µ carbon fiber to measure core. 
-Stopping range of protons is 300µ so protons pass through wire. 
-Wire signal is due to secondary electron emission.
-Wire bias voltage about -10V to enhance signal.

• Scraper is graphite plate brazed onto copper. Scraper measures halo
-Graphite is 1.5 mm thick so protons stop in graphite.
-Scraper bias voltage about +10V to suppress secondary electron 
emission.
-Copper is water cooled.

• Simulations predicted dynamic range of 103:1 for wire alone and 105:1 
for wire plus scraper. Approximately confirmed by observations.

• Simulations predicted wire can detect to 4 rms. Halo scraper extends 
this to 5 rms.



Measurement Cycle

• RF blanking pulse de-energizes RFQ.
• 75-keV beam from dc injector is injected into unpowered RFQ 

as injector beam approaches steady state.
• RF blanking pulse is removed and RFQ is excited. (T~5µs rise 

time)
• Beam profile monitors are in fixed position so only one wire or 

scraper is in beam at a time. All other wires or scrapers are 
outside beam pipe aperture.
-Wire or scraper collects beam-induced charge over about 30µs
-30µs limit is set by onset of thermionic emission of the scanner 
wire.
-Accumulated charge is digitized. 
-Only last 10µs of collected charge is selected for data. 

• After 30µs interval dc injector turned off.
• During 1 sec before next pulse, scanner wire and scraper are 

moved to next position.



Procedures for Matching and Mismatching are 
Important

• Beam matching is being done initially by adjusting the first 4 
quadrupoles to produce equal rms sizes in x and equal rms
sizes in y at the four scanners in the middle of the channel.
-A least squares fitting procedure is used.

• Pure mode mismatches are then done by calculating matched 
Courant-Snyder ellipse parameters at the scanners using 
TRACE3D. 
-Then, adjust the first 4 quadrupoles to set these parameter 
values. 
-Equal scale factors for x and y planes produce pure breathing 
mode.

• Mismatch strength measured using parameter µ which equals 
ratio of initial rms size of mismatched beam to rms size of 

matched beam.



Characterization of the Beam from the Profile 

Measurements

• Rms emittances at RFQ exit are calculated from a least squares 
procedure using rms-size measurements at upstream beam 
profile monitor for a array of different settings of the first four 
matching quadrupoles.

• Rms emittances at the two clusters of beam profile monitors are 
calculated from a least squares procedure using rms-size 
measurements at the four beam profile monitors in each cluster.

• Maximum detectable amplitude is determined from intersection 
of transverse profile curve with background noise level.

• Shape of distribution is characterized using a “kurtosis” 
parameter defined in terms of ratio of 4th moment to 2nd 
moment. 



Beam-profile parameter (kurtosis)definition
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-Similar definition applies for y and z coordinates.
-Dimensionless shape parameters independent of beam intensity.
-Easily calculated from moments of measured or simulated beam profiles.
-Zero for uniform-density 2D elliptical (KV) or 3D ellipsoidal beam.
-Equal to or near unity for Gaussian profile. 
-Matched beams without halo have values between 0 and 1.
Increases as tails develop, but can decrease and go negative if beam profile
becomes square. 



Approximate position measurement errors

• Beam centering: ±200µ.

• Beam jitter: ±50µ

• RMS beam size:  ±50µ



Preliminary results from measured profile shapes at 
75 mA

• Measurements have been made at 15, 50, and 75 mA. Initial 
analysis has been carried out for 75 mA data.

• Transverse profile measurements for mismatched beams show 
unexpected halo structure.
-shoulders
-asymmetries

• Rms-emittance grows along the channel; Growth rate increases 
as mismatch increases. 

• Kurtosis generally decreases with increasing mismatch strength 
as shoulders develop.

• Maximum detectable amplitude shows no measurable 
dependence on mismatch strength. 
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Y Axis Beam Profile
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X Axis Beam Profile
scanner 51  75 mA  mu=1.0
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Y Axis Beam Profile
scanner 51  75 mA  mu=1.0
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X Axis Beam Profile
scanner 22  75 mA  mu=1.5
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Y Axis Beam Profile
scanner 22  75 mA  mu=1.5

0.0001

0.0010

0.0100

0.1000

1.0000

-10 -5 0 5 10

Position (mm)

Wires only



X Axis Beam Profile
scanner 51  75 mA  mu=1.5
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Y Axis Beam Profile
scanner 51-75mA-mu=1.5
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Joining of Wire and Scraper Data

• Scraper data are smoothed and spatially differentiated to 
transform data to wire-like data.

• Spatial alignment of the data sets is determined from measured 
relative positions of wire and scrapers.

• Intensity alignment of data is set by overlapping data from the 
same spatial region.

• We are using a computer automated procedure. 



Matched beam-75 mA-scanner 22x



Matched beam-75 mA-scanner 22y



Matched beam - 75 mA - scanner 51x



Matched beam  75 mA scanner 51y



Mismatched beam (mu=1.5)-75 mA-scanner 22x



Mismatched beam (mu=1.5)-75 mA-scanner 22y



Mismatched beam (mu=1.5)-75 mA-scanner 51x



Mismatched beam (mu=1.5)-75 mA-scanner 51y



Matched beam-75 mA-scanner 22x



Matched beam-75 mA-scanner 22y



Matched beam - 75 mA - scanner 51x



Matched beam  75 mA scanner 51y



Mismatched beam (mu=1.5)-75 mA-scanner 22x



Mismatched beam (mu=1.5)-75 mA-scanner 22y



Mismatched beam (mu=1.5)-75 mA-scanner 51x



Mismatched beam (mu=1.5)-75 mA-scanner 51y
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Multiparticle simulations were carried out with different 
simulation codes.

• LINAC code with standard 2D PIC space-charge subroutine 
called SCHEFF. (Same routine as used in PARMILA.) Ran 
100,000 simulation particles on PC computer.

• IMPACT code with 3D PIC space-charge subroutine. Ran 10 
million simulation particle runs on SGI computer at LANL.

• Both simulations use beam distribution based on previous 
multiparticle simulation through RFQ. 
-RFQ output distribution is adjusted to agree with measured 
ellipse parameters at RFQ exit.  

• Excellent agreement between codes.
• Most of the simulation results are based on the IMPACT code. 



Preliminary conclusions from 75 mA multiparticle
simulations

• Measured results are not in good agreement with simple 
multiparticle simulations using the nominal output beam from the 
RFQ.

• Multiparticle simulations including lower energy particles, within 
about 1 MeV below the nominal 6.7 MeV design energy, show 
shoulders and asymmetries similar to the real data.

• Emittance growth, halo growth, and maximum amplitudes in the 
transport channel are also similar to the data.

• Precise tests of the simulation codes would require more 
information about the beam including the off-energy component.



Summary

• The present results at 75 mA are consistent with space-charge 
forces acting in a mismatched beam which contains a significant 
fraction, perhaps a few percent, of particles within about an MeV
below the nominal RFQ output energy.



Beam diagnostics

• Beam centroid

• Beam current
-pulsed current toroids
-350 MHz bunch current toroids

• Beam Loss
-differential current
-CsI scintillator/PM tubes

• Beam Profile Diagnostics
-Carbon wire for core
-graphite scraper plates for halo.
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